33 research outputs found

    Spin-pairing instabilities at the coincidence of two Landau levels

    Full text link
    The effect of interactions near the coincidence of two Landau levels with opposite spins at filling factor 1/2 is investigated. By mapping to Composite Fermions it is shown that the fluctuations of the gauge field induces an effective attractive Fermion interaction. This can lead to a spin-singlet ground state that is separated from the excited states by a gap. The magnitude of the gap is evaluated. The results are consistent with the recently observed half-polarized states in the FQHE at a fixed filling factor. It is suggested that similar anomalies exist for other spin configurations in degenerate spin-up and spin-down Landau levels. An experiment for testing the spin-singlet state is proposed.Comment: to be published in Physical Review

    Coulomb drag as a signature of the paired quantum Hall state

    Full text link
    Motivated by the recent Coulomb drag experiment of M. P. Lilly et. al, we study the Coulomb drag in a two-layer system with Landau level filling factor ν=1/2\nu=1/2. We find that the drag conductivity in the incompressible paired quantum Hall state at zero temperature can be finite. The drag conductivity is also greatly enhanced above TcT_c, at which the transition between the weakly coupled compressible liquids and the paired quantum Hall liquid takes place. We discuss the implications of our results for the recent experiment.Comment: 4 pages, 1 figure included, replaced by the published versio

    Monte Carlo Simulations of Interacting Anyon Chains

    Full text link
    A generalized version of the valence-bond Monte Carlo method is used to study ground state properties of the 1+1 dimensional quantum QQ-state Potts models. For appropriate values of QQ these models can be used to describe interacting chains of non-Abelian anyons --- quasiparticle excitations of certain exotic fractional quantum Hall states.Comment: 4 pages, 5 figure

    Chiral Spin Liquids and Quantum Error Correcting Codes

    Get PDF
    The possibility of using the two-fold topological degeneracy of spin-1/2 chiral spin liquid states on the torus to construct quantum error correcting codes is investigated. It is shown that codes constructed using these states on finite periodic lattices do not meet the necessary and sufficient conditions for correcting even a single qubit error with perfect fidelity. However, for large enough lattice sizes these conditions are approximately satisfied, and the resulting codes may therefore be viewed as approximate quantum error correcting codes.Comment: 9 pages, 3 figure

    A probabilistic evolutionary optimization approach to compute quasiparticle braids

    Full text link
    Topological quantum computing is an alternative framework for avoiding the quantum decoherence problem in quantum computation. The problem of executing a gate in this framework can be posed as the problem of braiding quasiparticles. Because these are not Abelian, the problem can be reduced to finding an optimal product of braid generators where the optimality is defined in terms of the gate approximation and the braid's length. In this paper we propose the use of different variants of estimation of distribution algorithms to deal with the problem. Furthermore, we investigate how the regularities of the braid optimization problem can be translated into statistical regularities by means of the Boltzmann distribution. We show that our best algorithm is able to produce many solutions that approximates the target gate with an accuracy in the order of 10610^{-6}, and have lengths up to 9 times shorter than those expected from braids of the same accuracy obtained with other methods.Comment: 9 pages,7 figures. Accepted at SEAL 201

    Spin-Orbit Coupling and Time-Reversal Symmetry in Quantum Gates

    Full text link
    We study the effect of spin-orbit coupling on quantum gates produced by pulsing the exchange interaction between two single electron quantum dots. Spin-orbit coupling enters as a small spin precession when electrons tunnel between dots. For adiabatic pulses the resulting gate is described by a unitary operator acting on the four-dimensional Hilbert space of two qubits. If the precession axis is fixed, time-symmetric pulsing constrains the set of possible gates to those which, when combined with single qubit rotations, can be used in a simple CNOT construction. Deviations from time-symmetric pulsing spoil this construction. The effect of time asymmetry is studied by numerically integrating the Schr\"odinger equation using parameters appropriate for GaAs quantum dots. Deviations of the implemented gate from the desired form are shown to be proportional to dimensionless measures of both spin-orbit coupling and time asymmetry of the pulse.Comment: 10 pages, 3 figure

    Lieb-Schultz-Mattis in Higher Dimensions

    Full text link
    A generalization of the Lieb-Schultz-Mattis theorem to higher dimensional spin systems is shown. The physical motivation for the result is that such spin systems typically either have long-range order, in which case there are gapless modes, or have only short-range correlations, in which case there are topological excitations. The result uses a set of loop operators, analogous to those used in gauge theories, defined in terms of the spin operators of the theory. We also obtain various cluster bounds on expectation values for gapped systems. These bounds are used, under the assumption of a gap, to rule out the first case of long-range order, after which we show the existence of a topological excitation. Compared to the ground state, the topologically excited state has, up to a small error, the same expectation values for all operators acting within any local region, but it has a different momentum.Comment: 14 pages, 3 figures, final version in pres

    Superconductivity by long-range color magnetic interaction in high-density quark matter

    Get PDF
    We argue that in quark matter at high densities, the color magnetic field remains unscreened and leads to the phenomenon of color superconductivity. Using the renormalization group near the Fermi surface, we find that the long-range nature of the magnetic interaction changes the asymptotic behavior of the gap Δ\Delta at large chemical potential μ\mu qualitatively. We find Δμg5exp(3π221g)\Delta\sim\mu g^{-5}\exp(-{3\pi^2\over\sqrt{2}}{1\over g}), where gg is the small gauge coupling. We discuss the possibility of breaking rotational symmetry by the formation of a condensate with nonzero angular momentum, as well as interesting parallels to some condensed matter systems with long-range forces.Comment: 14 pages, REVTEX, uses eps

    Double-Layer Systems at Zero Magnetic Field

    Full text link
    We investigate theoretically the effects of intralayer and interlayer exchange in biased double-layer electron and hole systems, in the absence of a magnetic field. We use a variational Hartree-Fock-like approximation to analyze the effects of layer separation, layer density, tunneling, and applied gate voltages on the layer densities and on interlayer phase coherence. In agreement with earlier work, we find that for very small layer separations and low layer densities, an interlayer-correlated ground state possessing spontaneous interlayer coherence (SILC) is obtained, even in the absence of interlayer tunneling. In contrast to earlier work, we find that as a function of total density, there exist four, rather than three, distinct noncrystalline phases for balanced double-layer systems without interlayer tunneling. The newly identified phase exists for a narrow range of densities and has three components and slightly unequal layer densities, with one layer being spin polarized, and the other unpolarized. An additional two-component phase is also possible in the presence of sufficiently strong bias or tunneling. The lowest-density SILC phase is the fully spin- and pseudospin-polarized ``one-component'' phase discussed by Zheng {\it et al.} [Phys. Rev. B {\bf 55}, 4506 (1997)]. We argue that this phase will produce a finite interlayer Coulomb drag at zero temperature due to the SILC. We calculate the particle densities in each layer as a function of the gate voltage and total particle density, and find that interlayer exchange can reduce or prevent abrupt transfers of charge between the two layers. We also calculate the effect of interlayer exchange on the interlayer capacitance.Comment: 35 pages, 19 figures included. To appear in PR

    String order in spin liquid phases of spin ladders

    Full text link
    Two-leg spin ladders have a rich phase diagram if rung, diagonal and plaquette couplings are allowed for. Among the possible phases there are two Haldane-type spin liquid phases without local order parameter, which differ, however, in the topology of the short range valence bonds. We show that these phases can be distinguished numerically by two different string order parameters. We also point out that long range string- and dimer orders can coexist
    corecore